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1, INTRODUCTION
Classical initial value problems of systems of first-order ordinary differential
equations are designed to solve
y' =ft,y); y(0)= Yo* (1.1)
Conventional methods such as Runge~Kutta and linear multistep (LMS) methods
have been very well developed (Henrici [16]) and have been demonstrated effective

large, prohibi-

3y

tively small step size values (h) are required for accuracy; then, conventional

is small., Frequently, for gv

for solving (1. 1) when

methods seem impractical. To overcome this difficulty, we choose to write (1. 1)
in the following way:

y' =Ay*gly) yO=y,. (L.1)"
where f(t,y) may be written as Ay + g(t,y) and A is either a constant matrix or
a function of t. In the case where Re{A(A)} < 0 and \(A), the eigenvalues of A,
differ greatly in magnitude and g(t,y) is a slowly varying function in t, equation
(1.1)' is called a "'stiff' equation, These stiff equations frequently occur in the
applications to chemical kinetics, reactor calculations, missile guidance, etc.

The search for effective schemes to solve stiff equations began over two
decades ago and still goes on. Curtiss & Hirshfelder [9] encountered the stiff
phenomenon in their study of chemical kinetics and proposed low-order multistep
formulas to integrate scalar stiff equations. Cohen [8], in solving reactor kinetics
equations, presented a generalization of Runge-Kutta methods. Certaine [7]
demonstrated that if conventional schemes, such as trapezoidal rule, were used to
solve (1.1)', then two problems were encountered — step size and accuracy.

Certaine then proposed a method to handle scalar stiff equations that have short



time constants, Dahlquist [10] discussed a general treatment of the stability of
linear multistep methods and investigated the special stability problem in connec-
tion with stiff equations. Dahlquist introduced an important concept, A-stability,
and proved that there do not exist A-stable methods among linear multistep methods
of order higher than 2. Widlund [32] and Gear [14] relaxed the A-stability con-
cept in an attempt to create higher order multistep formulas suitable for stiff equa-
tions. Widlund [32] defined A(a)-stability and showed that there exist K-step
methods of order K which are A(a)-stable for any a < /2 and K < 4. Gear [14]
weakened the A-stability concept, defined stiff-stability, and derived stiffly stable
methods of order <6, Gear [14] designed a computer program to peiform such
calculations. Stiffly stable methods of orders 7 and 8 have been found by Dill (1969)
and of order up to 11 by Jain (1970), but no tests have been made on their algo-
rithms. Lawson [24] generalized the Runge-Kutta method, Norsett [28] general-
ized the Adams-Bashforth methods, and Bjurel [3] modified linear multistep
methods. Contributions also have been made by Miranker [27] and Guderley

et al, [15], who designed stiff methods to solve special types of stiff equations.

The theory for stiff systems lacks a cohesiveness that this thesis attempts

to achieve by providing:

(1) A complete formulation of nonlinear multistep (NLMS) methods, which
is demonstrated to be a generalization of linear multistep methods both
in technique and in theory.

(2) A full development and proof of the theory of NLMS methods with

regard to stability, consistency, and convergence.
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(4

®)

(6)

)

A proof that NLMS methods accommodate A-stability in the sense of
Dahlquist [10].

A study of the effect of the error function € p+l (as defined in section
4, Computational Considerations) by means of a perturbation of the
characteristic roots. The study shows that LMS methods of order p that
possess the smallest error Cp+1 are only weakly stable. However,
it will be indicated that there always exists a NLMS family possessing
the smallest error Cp e
Extensive tests of NLMS methods applied to a set of selected scalars
and systems of stiff equations. Results are compared with Adams'
methods [16], Gear's program [14], Seinfeld's paper [29] and Ehle's
research report [11], and it is shown that NLMS has definite advan-
tages over the above techniques.

A section of conclusions and a summary of remaining problems with
some suggested solutions.

A listing of computer programs used to implement the NLMS methods.



2, PRELIMINARY CONSIDERATIONS

In this section, we define the problems under consideration and state the
theory in relation to the existence and uniqueness of the solutions of approximating
difference equations; tl.e proofs for the existence and uniqueness theorem can be
found in references [16] and [18]). The starting procedure involves the use of
initial data; the solution of the difference equations depends continuously on the
initial data. The order of the multistep methods will be defined as they are dis-

cussed and developed in section 3, Theory.

2.1, Problems Considered
In this paper, we consider the initial value problems of a system of first-
order ordinary differential equations of the form:
y “Ay*gty)
=f(t,y) Yy =y, 2.1
in the region R, definedby 0 =a<t<b<w; |ly|l<e. A is either a constant
matrix or a function of t; consequently, a portion of the theory will be restricted
to the important case, where the differential equations are stiff, i.e., Re{A\(A)} <0.
Among the numerical test examples, A is chosen to be a constant matrix and
Re{\(A)} < 0. The function g(t,y) € cptl (p > 0) satisfies the Lipschitz condition,
lot.y*) - gty <Lly* -y (2.2)
For the most interesting applications (those restricting the step size to ccaven-

tional methods) ,(A) >> L, where p(A) is the spectral radius of A.

Loy



2.2 Existence and Uniqueness Theorem
We assume that our initial value problems satisfy the conditions required
by the existence and uniqueness theorem, We state the existence and uniqueness

theorem expressed with respect to f(t,y) as follows:

Theorem 2, 2: (Existence and Uniqueness Theorem)

We assume that f(t,y) satisfies the following two conditions:

(1) €(t,y) is continuous in R, where R is the region

0=act<b<e,]y| <=,

(2) 3 a Lipschitz constant L* 3 for arbitrary t ¢ [a,b] and any two

vectors y and y*, the following condition is satisfied:
€t y* - .yl <L*|ly* -yl - (2.3)
Then, for any given initial vector y,, 3 one and only one y(t)

(1) y(t) is continuous and continuously differentiable for t¢ [a,b]

(2) y'¢t)=§¢t.y), t€[ab]

B) y@ =Y,-

To ihe differential equations (i.1), we adjoin appropriate relations, called
initial conditions, that serve to define a ''meaningful problem, ' If the solution of
(1. 1) satisfies appropriate initial conditions of smoothness, the problem (1.1) is
termed well posed in the sense of Hadamard (Isaacson [20]), and the problem has
a bounded, unique solution. Hochstadt [18] proved that the solution of the differ-
entiz] equation depends continuously on the initial data. This then fulfills the
Hadamard well-posed statement, It ought to be pointed out that even though

Hadamard's well-posed criterior is fulfilled, conventional techniques fail where



there is a very large Lipschitz constant. This is the area where we need to con-

sider nonlinear multistep methods.

2,3. Norms
In a finite n-dimensional vector space, we define the p-norm of a vector

to be

n 1/p
= p
Ity (2 1 )

n
nxnij 11
1/2
Il (2 1)

X
Il = fim ) = mpx x|

For a matrix A of order n, we denote

[V]:s.-.

1

e
il

A(A) as the eigenvalues of A and
p(A) as the spectral radius of A .

The different norms of A take the following definitions:

Al = [o(arA) ]2

n
All, = max a
1Al = mex iX;I,,I
n
= a
LUR: LY

I Afg = (Z a )1/2.

i=1 j=1



Let |l 4 indicate one norm and let I o ||]3 indicate another norm. Then
oIl A and || e "B are said to be equivalent if 3 two positive numbers a and b ?
al el <lelig<bliel, -
We know that in a finite-dimensional space, all norms are equivalent; therefore, the
norms used in this paper do not refer to any specific norm. However, in the Pade
approximation, we use the column norm | e ||1 ; in the Ehle's test examples, we use

|| o ||2; and in the other test examples, we use |l ||.°. In the lemmas and theorems

where the norm does not have a subscript we mean any norm,



3. THEORY

This section develops the full theory that provides the basis for NLMS
methods, including the development of the important notions of Stability and Con-
sistency. The formulation of NLMS methods, which assures consistency and is
closely connected with the theory, is also described in this section.

NLMS methods are demonstrated to be a generalization of LMS methods.
The general foruula is described by (3.5), and the formulation is expressed by
(3.36). Both explicit and implicit schemes are given in matrix expressions up to
an order of 3. The application of NLMS methods for the solution of stiff ordinary
differential equations leads naturally to the selection of strongly stable methods.

The theorem on convergence (Theorem 3. 7), which follows for suchstrongly
stable and consistent NLMS integrators, is also presented in this section. Three
lemmas needed to prove the convergence theorem are developed. Some of these
proofs are a modification and extension of the proofs used by Henrici [17] for LMS

methods, The theorem of A-stability is also presented in this section.

3.1. Nonlinear Multistep (NLMS) Algorithm
For convenience, assume A to be a nonsingular, constant matrix. Equa-
tion (1.1)' can be written as

At

d - -At
x & y)=e gty yO =y, (3.1

Then, integration of the above equation over the interval [t,, t,,i] gives

t 1
Y(tn+i) = eiAh Y(tn) + Itn+i eA(tn+i-t ) g(tl' Y) dt'. (3. 2)

n



If e'Atg(t,y) is a slowly varying function, a simple change of variable allows
successful integration by conventional methods. For g(t,y) slowly varying and
Re{\(A)} <0, p(A) >> 1, conventional methods require a prohibitively small
step size,which we overcome by NLMS methods. Qur method of attack is to express
g(t,y) as a low-order polynomial in t by retaining the first few terms of the Taylor
series of g(t,y) expanded about t,. The complete derivation of this idea is
properly described in section 3.3, Consistency. When g(t,y) =0, equation (1. 1)’

becomes homogeneous, i.e.,
y' =Ay; yO) =y,. @.3)

Without loss of generality, we consider a =t, =0. The solution of (3.3) is
t) = eAt y(0 tl
y(t) = ™" y(0). Consequently,
iAh
yt p=e yt),
which is the rigcrous solution in the absence of round-off errors, wherei =90,1,2,

..., aninteger index, and h =1, - t,.

The linear multi-K-step methods take the general form

K K
.Z * Yoy~ B Z B ¥ 6.4)
i=0 i=0

where aK#O and |ao| + |Bo| >0.

, the method is

implicit

The generalization of (3.4) lexds to

K K
Ah(K-i
§ ai . =D Yn+i =8 igo ¢K1(Ah) On+i ©.95)
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where o #0 and |a | + |Méy, (AD)| > 0.
$

(ic(AD) =0
¢

explicit

If , the method is

ki (Ah) #0 implicit
Without loss of generality, we assume ag = 1 for computational convenience, The
coefficients of y, ,;, 9,,;; depend upon (Ah), We note that we need K starting

values to proceed.

3.1.1, Starting Procedure

A convergent K-step method will produce a uniquely determined sequence
) A TN A for an arbitrary set of starting vectors §_, Sl s h .")K_1 . In
practice, we obtain the starting procedure by setting the starting vectors equal to
the given initial vector and calculating the subsequent (K-1) vectors. These
starting vectors are required to be bounded in order to meet the stability criterion.
We have already shown that if the differential equation satisfies certain require-
ments, the solutions of the difference equation depend continuously on the initial
data. Thus, a unique solution exists and the numerical solution approaches the

exact solution,

3.2, Stability

If a bounded starting procedure yields a uniformly bounded solution of the
approximating difference equation to the differential equation (1.1) as h-+0, we
say that the method is stable, We can also describe a stable method as follows:

Let So, 51, N SK_1 denote the K initial vectors »

S i(h)|| <M, a constant,
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Let
Y; = Si(h); i=0,1,2,...,K-1.,
Then 3 a constant M', independent of h, 3
mgx [ Yn(h)“ <M',
The stability is determined by the root condition, i.e., the modulus of the roots of
every characteristic polynomial must not exceed 1 and the roots of modulus 1
must be simple, (The characteristic polynomial is discussed in this section.) We
now procced to develop the theory with regard to the concept of stability.
If equation (1. 1)' is homogeneous, i.e., g(t,y) =0, we expect that the

values y(t;) can be found exactly in the absence of round-off error. If (3.5) is to

hold when
h
ytod =e 2yt . 8.6
then substituting (3. 6) into (3. 5) gives
K K
> a MR CLAR ytt) = hik yt) > a,. 3.7
i=0 i=0
K
For y(t,) #0 and (3.7) to be zero, we discover that E a; must be 0. Thisis iden-
i=0

tical to the necessary condition for LMS methods to be consistent. The char-

acteristic polynomial, following Henrici [16] and Dahlquist [10}, for LMS methods is

mprese b=y at, (3.8)
i=0

Polynomial o({) is said to satisfy the "'rcot condition" if K roots {, satisfy

|£;] < 1 and if the roots satisfying |{;| =1 have multiplicity 1. Later in this

section, we show that the characteristic polynomial of NLMS methods generalizes
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the characteristic polynomial of LMS methods and that our particular choice of
NLMS methods obeys the root condition. We will explore the necessary condition
of stability later in this section and the sufficient condition of stability in section

3.6.3. Since 1 is a simple root of the characteristic polynomial, we have
K
1) = =0, 9
p (1) 126 a @.9)

which is imposed as one of the conditions of consistency for LMS methods.

Formula (3.7) can be written as

K K A
z o eAh(K-i) (eAhg')i - eAhK Z o g_l § eAth({) .
= 1 i= !

If all K roots satisfy the root condition, p({) must be equal to 6. Then

K
Z - (ARE-) (eAhr)i -0.
=0

e

Since a matrix annihilates its characteristic polynomial, its eigenvalues must

also annihilate the same polynomial, Thus the above formula can be written as

K K
png) = 3 o MAVRED QAN LS @m0, @)
i=0 i=0

Equation (3. 10) is a set of n equations for the components of e MK {. Each equa-
K
tion is a characteristic polynomial of the form E aifi =0, where &, which
thK i=0
stands for Ej =e {j , is the component of the j-th characteristic polynomial

and £, ., £, greeesr & are K roots of the j-th characteristic polynomial
jil j’?' j’K

p(\, ¢) with A=>\j(A). Thus, we have

K K
p(\1) = Z ai(eXhK) = e)‘hK g a, = exth(l) =0. (3. 11)
i=0 i
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This is a condition of consistency for I MS methods. Note that (3. 10) generalizes
(3. 8) and (3. 11) generalizes (3.9). Equation (3. 10) is defined as the characteristic
polynomial for NLMS methods,and (3. 11) is a necessary condition of consistency
for NLMS methods.

Let us use test problem 3 (from section 5, Numerical Comparisons) as an

example to show that the root condition is a necessary condition for stability. Con-

-1 95 1
- i y©) = .
y <-1 -97>Y y <1>

Using the nonlinear multi-2-step method with ap =4, ) =-5, and ag =1, we

sider the problem

obtain

2Ah Ah

46 Yn-5e o,

Yn+1 * Yn+2 =
with the initial values

y, = (L 1’

y; = (-5791054, -, 60958467E-02)T
and the step size, h, =.,625. Our NLMS characteristic polynomial is

2A\h 2\h 2\h 2
p(\g) =4e ~5e (+e ¢

=0=6 (s-1) (1-4),
which has two simple roots, 1 and 4. Obviously, this violates the root condition, As
we proceed to solve this problem numerically, we can see, from the computer results
shown below, that the divergence becomes evident after 7 steps., Thefirst column of
the results is the iteration index, and the second column is the current t values, The
last two columns show the calculated numerical values of two arguments, indicated

by A. The twovalues below the arguments are exact solution values, indicated by T.
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The nonlinear multi~-2-step method used to solve problem 3 is stable be-
cause we chose o, =0, @ = -1, and ag = 1, so that the characteristic polynomial
has two distinct roots, 0 and 1. Hence, the root condition is satisfied, and the
method is stable. Thus, we have shown that the root condition is a necessary con-
dition for stability. We defer the proof of the sufficient condition to lemma 3, 6. 3.
Thus, the stability for NLMS methods is a direct generalization of the stability of

L MS methods (Henrici [16]).

3.2, 1, Strong Stability

A particularly advantageous feature of NLMS methods is that the strong
stability condition res:lts when Re{A(A)} < 0. Since stiff differential equations
frequently occur when Re{)‘(A)} <0 with p(A) >> 1, it is most important that
the parasitic growth of the extraneous solutionof the difference equations be damped
out. To ensure this, the NLMS methods are selected to be strongly stable. This
is not a restriction of NLMS methods since the methods are also applicable when
Re {)‘(A)} > 0; in this case, the error growth is appraised by the estimate fur-
nished by lemma 3. 6, 3.

A measure of the growth of LMS methods is provided by examining the solu-
tion of the homogeneous,constant coefficient difference equation. Consider the
homogeneous equation of LMS methods,

K
IERARLE 0.12

We recall that strongly stable solutions of the LMS methods occur when
K

i
Pl = &l >

i=0



16

pl(;) =—;’,q-)-1 has roots for g1 eeen %

where
[$al2 |Eg|2cee ISkl < 1.
The corresponding homogeneous equation of NLLMS methods is

K

Ah(K-i) _
> o ANy 0. 6.1
i=0
Since
AMED 4
let
Ah(K-i)
e , = .
n+i n+i
Then (3. 13) becomes
>
a, W =0. @S. 14)
=0 i nH

Equation (3. 14), of course, has precisely the same constant coefficients as the
linear difference equations of order K. In fact,

- ALK

n+i n+

- i
- GABK-D) (eAh ()

i. j=1’2,..l,K.

= i

_ GABK

Strongly stable solutions will result for

<1,

¢

Iex(A)hK :

Note that these extraneous solutions damp out extremely fast since Re {\(A)} < 0.

Therefore, we see that strong stability implies that ||eAh(K-i) Yot " is uniformly
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bounded. For A=, He‘h‘K’i)

Yn+i" reduces to A ME which means that

MY, 4l is uniformly bounded; this is the stability definition for LMS methods.

3.2.2, A-Stability

Another advantageous feature of NLMS methods is that when they are used
to solve stiff equations,they are A-stable. Dahlquist [10] defined a method to be
A-stable if the numerical solution || Y, | = 0 asymptotically as n -« for
the differential equation y' =Ay where Re {\(A)} < 0. If A-stable methods of
order higher than 2 exist, they do not belong to the linear multistep family since
it has been proved by Dahlquist {10] that an LMS method of order higher than 2
cannot be A-stable. However, since A-stability is a desirable property when solv-
ing stiff equations, it is preferable that it be retained in NLMS methods. We will
introduce a theorem which shows that NLMS methods accommodate the A-stability
in the sense of Dahlquist.

Matrix Exponential

We begin by discussing the computation of a matrix exponential, eA. IfA
is a scalar, there is no difficulty in computing eA. If A is a stable matrix
(Young [33]), i.e., Re {)\(A)} < 0, then the rational Pade approximation is also

stable (Varga [31) and Lawson {24]), as shown by the following lemma.

Lemma 3.2.2. (Pade Lemma)

Denote the Pade approximation to eAh by Pade (Ah), Then for

Re {A(A)} < 0, the Pade (Ah) is stable, i.e., p(Pade (Ah)) <1.
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The Pade approximation to a matrix exponential, eA, has many different
expressions, which can be found in references [5] and [31]. In our present test
computations following Blue [5], we use

29-1 2
A= |z _ A A A A
R2’2(A) e [I 2+12] [I+2+

for Re {)\(A)} < 0, Where x is a real scalar <0, eX can be calculated directly

from an accurate exponential routine, The Pade approximation is applied with the
requirement that p(Ah) < 1 when Re { )\(A)} < 0. The Pade approximation to eAh
using a polynomial of degree n in the numerator and m in the denominator has an
error O(httm+ly ag h - 0 (Varga [31]). If p(Ah) is not <1, the accuracy can be

ensured by the identity eAh = (¢27"Ah)2™

Theorem 3, 2,2. (A-Stability Theorem)

When used to solve stiff equations, NLMS methods accommodate the

A-stability in the sense of Dahlquist.

Proof: In the Dahlquist serse, when applying NLMS methods to the problem

yi = Ay , which implies g(t.y) =0, NLMS methods produce the approximate
_ Atn _ nAh n

solution to the problem: Y, " ¢© Y, " ® Y, Since the Pade (nAl)) is

stable, the nlim 1 yn"_.o , thus establishing the A-stability.

We note in passing that the solution to this problem is the principal reason
for NLMS methods to be of interest. The NLMS methods solve this problem rigor-

ously for every constant matrix A in the absence of round-off error.
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3.3 Consistency

This section deals with the development of the theory of consistency in re-
lation to NLMS methods. Later in this section, we show that NLMS methods are
congistent and demonstrate that our consistency is a generalization of the consist-
ency of LMS methods. An immediate need is to define what we mean by consistency.

A method of (3.5) is said to be consistent if

K K
Ah(K-1) _
mgx Fz(:) ai e Yn+i h :;) ¢K1 (Ah) ’n+i

is small as h - 0, We shall show that the contistency we will develop for NLMS
methods actually satisfies our definition,

Problem (1. 1)' can be written as (3. 1), which is

d , -At -At =
g€ Y=e gty: yO =y,

Integration of the above system over the interval [tn ; tn+i] gives

iAh Jn 1  Altn+i-t')

Y& Tyt g(t'y) dt',

n

which is our equation (3.2). If e-At g(t,y) is a slowly varying function, = simple

change of variable, i.e.,
-At
Y,
allows successful integration by conventional methods such as the Runge-Kutta or

LMS methods. Lawson [24] used this idea. For g(t,y) slowly varying,
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Re {)\(A)} <0, and p(A) >> 1, conventional methods require a prohibitively
small step size, which we overcome by NLMS methods, The method of attack is
to express g(t,y) as a low-order polynomial in t, e.g., by retaining the first
few terms of the Taylor series of g(t,y) expanded about tn . For the moment, let
us introduce the NLMS operator,I

N
ator is described in section 3,4, Nonlinear Operator.)

{y();h]. (The construction of such an oper-

Write

LS Ah(K-i) K
IN[y(t);h] =3 ae y(t+ih) -h D ¢, (Abg(t+ihy),  (.15)
i=0 i=0
and introduce the true operator,

i[y(t)] =3t - Ay - g(t,y) =0 . (3. 15)'
For g(t,y) € cp+l , we evaluate the local discretization error as follows:

Ly 0] =gy [y®:n)-Lry®)

K K
_ Ah(K-i)
= a, € y(t+ih) -h ¢ . (Ah) g (t +ih,y)
{dx Ay- g(t,y)} (3. 16)

The terms inside { } of (3.16) vanish because of (3.15)'. If we expand g(t,y) in

a Taylor series expansion around tn , weget

)
L) g (tn: Y (tn)) j

gtty) = 2 T -t
=0 )
ooy e, ye) .
= : t-t) + L -t )P
— i! n (+ 1! n
t-t )p+1
+ OG (t . (3. 17)

-n (+1)!
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In the above,

G Ilg® ™ ¢, y®) - &

(t-t)= mav
p+l t-t CKh

@ty
is the modulus of continuity when g(t,y) satisfies the Lipschitz condition only,
0<6<1l, and p+1=0,

By substituting (3. 17) into (3. 2), we get

' (1))
pt . -At-t )g ' (t,y(t)) .
i nH n n PN
yt )= (t)+jz=:0 S T (t'-t ) dt
n
(p+1)
t o -At-t )gP Lyt )
n+H n+i n'?n" ., Pl
+It e el Rl
n
1
t . -AE-t ) @ -t )P
+0 O o nt'e +1(t'-tn)-mil;-!— dt' . 3. 18)
n
Define
‘A(t'- )
Tian- [ Mty g, (3.19)
t n

Expanding g(t+ih,y) at t=tn and neglecting the terms modulo (p+1), we get

J
g(t +ih, y)= g '(}ﬂ-l!)—g(j) (tn,y) . (3. 20)
j

By substituting (3. 18" and (3. 20) into (3. 16) and using definition (3, 19), we get

K K (Ah)
Ah(K-i) iAh ANK-1
.‘.[y(t);h] = Z a, e (K-1) e Y(tn) + i;gz ayr® * )[ il ]
1
i K Ip ** (A)
< (i o) A 0‘“’[
b2 ok ¢K1(Ah)§9 RAPIEL TR

=0
@™ ¢ ye) o6, - t»] @.21)
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Now, let us look at the last term of (3.21). For gt y®) C@p , the class of
polynomials of order p, the last term vanishes. For gt yt) € Cp+1 , the last
term will be O (hp+2); this is followed by examining the bound for the last term.

The bound is given by

K
<2 1%l

K [:: P*1 @an)
i=0

Ah{K-i) (p+1)
g{; o e ®+ ) :l (9 (tn, y(tn)) + 06p+1 (t_tn))

p+2

AhK-i)| kP2 1
Tt )"W (g™

¢ ye N +le , 6l ¥ =0a”? . @.22

p+l
As h - 0, this bound vanishes.

For arbitrary g(tn,y), we select { | of (3.21) to be zero, so that
1111.13:) v[y(t);h] =0 . This defines consistency for NLMS operators and shows that
the NLMS operator is consistent with the true operator in the sense of Keller [22].

Since the true operator is 0, then the lim r[y(t);h] =0 is equivalent to
h-0

K
lim max =0,

h-0 n

K
Ah®-)
@ ® Yorg ~ D 1Z=<:> (AN @

i=0
which is our definition of consistency. The selectior. of { |} of (3.21) tc be O
enables us to determine ¢Ki (Abh) and guarantees the consistency, so that a formal
analogy with LMS methods results. Thus, we see that our NLMS methods are a

generalization of LMS methods.
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3.4  Nonlinear Operator, i N[y(t); h]
Since we have now established the consistency, let us define

) R0 A,
9‘,’ (AT I An) A jtn+i ) At )

i j! !
n

Vg Vg
R

For j=0,1, we get

t . -AR-t )
9,?=A [ e L, _ AR,

2 t
n

t . -A(t'-t )
9-i1= A’ It"“ e nH -t) dt'=(eiAh -1) - iAh.

n

By induction, we get

Qmn =‘9,111_(1Ah)"‘“ .
i i “m+y!
then

iAh)4
S_:inh_;(_ﬁ_l__. (3. 23)

=0
We already have associated the nonlinear operator with the nonlinear multi-

step formula by (3. 15). Take n = 0; then

K K
xN[y(t);h] =Y« JADK-D) y,-hD. e (Ab)g, . (3. 24)
i=0 =

If we use formula (3. 18) for y, and formula (3.20) for g, (letting p +w) and

formula (3. 23), and substitute them into (3.24), we get

K ) I (Ah)
_ Ah(K-i)| iAh G) ih) ()
I.le(t):hl— ;ai e ’[e Y+j§ TR ] -h Z«bm(Ah)[Zi—’—g ]

, (@
A yi+C g+ C hg'+...+C Mg

K
;Z“ JARE-1) 1AD }
L (3. 25)



24

Note that because of the root condition, { } of 3.25) =@ . Thus,

,i NY®:n =3 ¢ o™, (3. 26)
m=0
where
K (1) (An) K_
Cj(h) Z Ah(K i) l_i‘”_] -hzijl—)thKi(Ah). j=0,1,.... (3. 27)
i=0 i=0

We define the order p of NLMS methods to mean that

c,m=Cm=... =cp(h)=o but cp+1¢0.

At this point, let us distinguish the orders between LMS and NLMS, i.e.,

Pl MS and PNLMS' When A =0, itis implied that g(t,y) = §(t,y) =y'. Then

(3. 25) becomes

& yom) L, yw:)
K

/l\ /*
M= IM
R R
Nall N
~ <
+ +
M 02
0 o
= 3
- (<]
= (=

[
TN
e

1]
R
S——
<
+
(2]
Cande
S
~
~<
=
+
Kot

(a+1)

[
/'\
Pt

i}
(=]

ai) y+C @y +C Oy +...+C Oy

If we reindex the coefficients of y(j), we get exactly the coefficients of the LMS
operator; this confirms that NLMS methods are a generalization of the LMS methods
since LMS is a special operator of NLMS, When A #0, the two p's are not com-
patible since, in this case, the solution depends or an exponential times a poly-

. = -1,
nomial of order PNLMS Then we have Pnims ~ PLMms
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3.5 Formulation
3.5.1 General Formula
By our selection, we set { } of (3.21) =0 for j=0,1,..., p togive

p-th-order methods 3

j
S I (Ah) K. (i
ARK-i) [ =i i (th) i

The above equation expresses a K-step, p-th-order method that consists of a sys-
tem of p+1 equations. The choice of K and p will determine whether this system
has a unique solution, has many solutions, or has no solution. We make a choice
» p=K, which ensures the existence of inverses of K and H. Thus, we can

determine ¢K1(Ah) based on the choice of « i's, which can be written as

K ATl ) An) i#+1 K
e eAh(K-i) [ . i - (Alf)! z ij ¢Ki(Ah) . (3. 29)
i=0 L A
Substituting (3. 23) into (3.29), we get
K ) 2 i*l K
Ah(K-1) [ iAh (1Ab) ] (Ah) j
AL e - SHES i’ ¢.. (Ah).
a8 s R
Because of the root condition, (3.30) becomes
K J 2 j*1 K
Ah(K-i) (Ah)* _  (Ah) j
;‘6 a ¢ D TR g i ¢, (AD). (3.31)

If we multiply both sides of (3. 30) by (Ah)_(jﬂ) and let ||A|| -0, we get

>

i=0

j

K g+t .
m ¢4 0) - (3.32)

%G+ 1)

i=0

Then j =0 gives
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the consistency condition for LMS methods for ¢ Ki(0) = BKi - 61 . This confirms
that NLMS methods are a generalization of LMS methods.

We determine ¢Ki(Ah), without loss of generality, by selecting ap = 1.
In addition, we require the condition of strong stability to be realized, i.e.,
Re {)‘(A)} <0. The ¢Ki (Ah) are determined by means of (3.31), which can be
considered as a matrix equation for K-step, p-th-order method (K > 1, p>0). On
the other hand, we can select ¢Kj (Ah) to determine ai's as well, but we choose
not to do this since we would have to investigate the strong stability of the
resulting ai's. It is easier to choose ai's to be strongly stable and then
solve for ¢Ki(Ah). An approach to the selection of ai's to ensure strong stability

is presented below, The (K xK) companion matrix of the characteristic polynomial

p(f) = 3 A ;i takes the form
i=0
0 0 0 e
1 0 r 0 -ﬂl
0 1 0 -e-tz
0 0 e 1 -»-:tK_1

for ap chosen to be 1. We require that o (1) = 0; then 1}1_-{'(:) a, must equal 0.
Apply Gerschgorin's estimate columnwise to obtain the ei;envalues of the com-
panion matrix, and impose the condition that the eigenvaiues lie on the boundary or
inside the unit circle. For the first (K -1) columns, we have the same estimate:

Ix-0|<1.
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The estimate of the last column gives

K-2

< "’il ’

|X - (-aK_]_)' X
i=0

which implies that
K-1

LYEDINLN

i-0

where we require the bound to be <1.

Next, we look for conditions of « i that produce strong stability, Consider

K-1
p(Q A i
p(p) =25l = %" & 17,
1 ¢-1 = i
where
K i

a = = a a
o = - - ‘a .
= lgo

The associated (K- 1)x (K ~1) companion matrix of the characteristic polynomial

Pl(;) takes the form

0 . 0 '“ﬂ
A
0 e 0 -ﬂl
A
1 0 ﬂz
0 . 1 _&
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Again, applying the same procedure used above to estimate the eigenvalues and to
ensure that the eigenvalues lie inside the unit circle, we get
A K-3
= =1 l= A
IN-0] <1 and |x - (-8, )| _:2:0 18,1,

which implies that

K-2
A
I <D 18 <1
i=0
Thus, using
5
a, =1
=k
a 1 <1
= 1%
and
K-2 i i
a, - a |<1,
= |5=¢ J ;—-:6 i

we can select a;'s satisfying the condition of strong stability.

3.5.2, Matrix Formula for ¢Ki

In (3.31), i is a column index and j is a row index., Let ¢ be a vector of
K -1 or K elements whose components are ¢Ki(Ah); i=0,1,..., K-1or K.

Then ¢Ki (Ah) can be determined by the matrix equation

= KlHlEV, (3.33)
Each of these symbols is described in the next section. For the system of equa-

tions, the above matrix elements are all submatrices.

-
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3.5.3. Explicit Schemes

Equation (3.31), expressed as a predictor, takes the following form when

¢KK(Ah) =0:

K . y g
Ah(K- (1Ah) (Ah) .
;0 a e (K-i) ?_:0 T Z J 4, (AD) o.34

i=0

for j=0,1,..., p. Now, we have

I I [ KA
I+Ah I+ KAh o oK-DAD
-1 m -1 m
i (b~ ®An™ [ |
e m! ' = m! KI

(K - I

p-1

>

T
—~———
o - Q

®-1) *x, K-1

(3.35)



In the matrix form, we get

30

Ev=-HKé¢- (3.36)

Thus, ¢ can be obtained by (3.33). Here,

M (Hy)
K=(K,)
E= (E)
v= (V1)
= (4,)
where

ﬁ=1’ se e 9 K+1n

3.5.4. Implicit Schemes
If we use (3.31) as the formula for a NLMS corrector, for ¢KK (Ab) #0,
we have

K 2 *1 K
Ah(K-{) (1Ah) (Ah) j
@, e = - i’ ¢_ (Ah)
1};0 i ; 2 i! ;0 Ki
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for j=0,1... , p. Now we have

1 I o eKAh
[o}
I+Ah I + KAh « oE-DAR
% ap” P, xAn™
Z m! Z m! apl
m=0 m=0
Ah /
= O /1 I
2
= - L—)—Alhl y 1
\\x\\ N
O Ab)” /\o 1

H=(Hppy)
K= (Kmm>

E= (Emﬁ)

v= (¥p)
N (*01) °

where
m=1,...,p+1

.ﬂ= ,oo-,K+1-
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3.6. Lemmas

We now come to the most important theorem, the convergence theorem,
Before this theorem can be proved, three lemmas are needed. Tue proofs of two
lemmas and of the convergence theorem are an extension and modification of the
proofs of LMS methods developed by Henrici [16]. We begin by establishing the
formula for discretization error in the approximate solution of an arbitrary differ-

ential equation by NLMS methods.

3.6.1, Lemma 3.6.1

Consider the general cnaracteristic polynomial,

K .
pOD) = PMALD) =D @ (€ Y,
i=0

which satisfies the root condition; i, e.,

p(\,1)=0 ¥ x=>\j(A).

It is easily seen that p(A,{) also equals O :

r

K K .
- h
0=rA0 =) a ™= o AEVAL 0. @y
i=0 i=0

The following lemma is a generalization of Henrici [16].

Lemma 3. 6. 1: Define the scalars ¥ 0= 0 for £ < 0,where { is an integer index.

Then, 3 a set of bounded scalars {7, } >

> o JABES) Ty Ed) . (3.39)
_0 P - o; l> 0

i=
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Proof: Write (3.38) as
K Ah(K-i) i
p(A)=p(E) =) e ¢ =0,
i=0
where § = eAh {. Consider
P#(g) - lta eI\hg to.tay eI\h(K—Z) gK-?. +ay el\h(K-l) gK-l+ a eAthK

- gK (e g-K+ "‘K-leAh g-(K-1)+. v, eAh(K-z) §-2 b eAh(K—l) g-l
+a eAhK) = ng(g—l) .

The roots of each row of p#(g) are the reciprocals of each corresponding row of
p(¢). Note that eAh #0 and p(¢) = eAhK p(t). By lemma 5.5 (Henrici [16]),
the p(t) of each row has no roots outside |{|= 1 because of the root condition. It
follows that [p# (g)]“1 is holomovphic inside |{|< 1 for all n rows., Using the

Maclaurin expansion for each row of [p# (g)]-l, we find

e et . (.40)
1=

By Cauchy's estimate, it is seen that all vi are bounded. To prove (3.39), we

multiply both sidec of (3. 40) by p# (¢) and equate the coefficients, obtaining (3. 39).

Q.E.D,
From (3.5), since ay # 0, we can write
| K-1 K
1 Ah(K-i)
1 1=

which is of the form

y=G(y), (3.42)
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where y = Yok The successive iterative form gives

yU™ - G(y(")) (3.43)
for any initial vector Y(O).
Let G(y) be defined for || <=, and let 3 a constant k 3 0 <k < 1. Then
G(y) satisfies the condition
laty® -Gyl <k lly* -yll . (3.44)
Using the definition of G(y), formula (3.41), and the fact that g(t,y) satisfies the
Lipschitz condition with Lipschitz constant L, we see that condition (3. 44) is satis-
fied by
Bl An

a
K

L (3. 45)

for sufficiently small h and for all ||A] < e .
For the iterative procedure (3. 43) to converge for arbitrary initial y(O),
k is required to be <1:

h || ¢y (AD)|
L

k<l- <1, (3. 46)

[+ 4
K
Conventionally, when using LMS K-step methods with a, = 1, we select h>

B BL¥ ~ x (<1). (3.47)

Similarly, for NLMS K-step methods, we select hN to satisfy condition (3.46):

(- (AhN)" hy Lo« (3. 48)
Combining (3. 47) and (3. 48), we see that

by = "‘1-(1( (AhN)' Bx L_Ij e
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-1
For " ¢KK (AhN)" BK not too small, we know that L* >> L ; therefore, hN >> h,
This tells us that we can choose a much larger step size using NLMS than we can

choose using LMS.

3.6.2. Lemma 3,6, 2

Lemma 3.6.2: Let h satisfy the condition (3.46). 7Then

K
2 14 D) <=
i=0

Proof: The ¢K1(Ah) are linear transformations in a finite-dimensional vector
space; therefore, they are completely continuous (Bachman [1]). Every completely
continuous transformation is itself continuous. In finite-dimensional spaces, a
linear transformation is bounded if and only if it is continuous. Hence,

4y, (A < = (3.49)

for i=0,1,2,..., K; therefore,

K

2 e A < =.
i=0 Q.E.D.

3.6.3. Lemma 3.(.3
The next lemma, a generalization of Henrici [16), concerns the error

growth of NLMS methods. The proof of this lemma is preceded by a list of neces-
sary definitions. Let

M sup{lyf}<r
i

I
M=
)
W

o
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) max,eK"(A)hl; 0 <Re{A(A)} <
1 ; Re{n(A)} <0
(4) Let z, be initial guesses
Izll< 3wy
(5) I.et )\, be the growth parameters
InI< AV

€ o=r " - h"x,n-x)-lﬂ
K
() i}_jo oy, (Ab) < ¢

(8 n=0,1,...,N.

Lemma 3,6.3: The growth of the solution (zm) of NLMS satisfies the following

inequality:
nh
z_ll < o(GEQ+NA) & 7°, (3.52)
Proof: We begin by examining the error growth of the NLMS nonhomogeneous dif-

ference «quation:

Ah KAh
z

x z +
K m+K aK-l 2 zm+K-1 ~ goo “ b m

¢ z }*"m' (3.53)

z + L
K-1,m m+K-1 o,m m

=h {¢K,m zm+K *
where m=n-K-f¢; £=0,1,..., n-K. For A=0, this reduces to the LMS
case, For A # 0, we approach an error bound, We multiply both sides of (3. 53)
by 7, for /=0,1,...,n-K. We then sum up each side and use formula (3. 39) to

obtain:
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) Ah KAh
LHS=Z +(xp 1€ Ypxteoot o€ v okt) Pk
2Ah KAh
Zz
tlag o€ Ykttt Y ogeo) Tgatee
KAh
+a e Y ¥ 4
o n-K o

and
RHS = h{¢K,n-K70} zn L {¢i{-1.n-K Yo * ¢K,n-K-1 71} z11"1 '

+h{¢ té ZRETTRE

+ e
o,n-K Yo © ®1,n-Kk-1 K,n-2K “’K} Tk

X {¢o,o ‘Yn-K} zo = ()‘n-K Yo +>‘n-K-l Tyt * xo 7n--K) ‘

The coefficients of zo , X 1 of the RHS are functions of Y ¢

1°° En i,n-K-i’

If we apply lemma 3.6.2, the norm of the sum of each term inside { } < oT.

Equating LHS and RHS gives
= -
SRR L P R (PR LR S AL PR L (PR MPRETE

+h{ }zo+(x A

n-K Yo + n-K-1"1 000 &7 )'o 7n-K) ’

Solving the above equation for zn , we obtain
-1
zn=a_h¢K,n-K7o) [h{ }zn_l+h{ }zn_2+,,. +h{ }zo -{( )zK_1
*( )zK-2+"' *( )zo}+(xn-K70+xn—K-1 LAREEE +,‘o‘yn-K)] - 6.59)

Applying our above definitions to the terms of (3. 54), we obtain

K
IC) g 3+ C) Eg gt eee *A )‘o||5<zo I"m|>Er;=F%4E (3. 55)
m:

I

+
n-K 70 A

.56
nek-1 Y1 oo P N Y gl SNAT 3. 56)

n-1
I}z _ +h{}xz ,+...+n{ }z ll<hre g::o Iz_Il . (3. 57)
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Then, taking norms of both sides of (3. 54) and applying estimates (3. 55), (3.56),
and (3.57), we find
-1 n-1 \
Iz <@ - ey v IArIGE + Pho 3 x|l + x|

n-1

=a{h¢z ||zm||+f,guE+NA}. (3.58)
m=0
Let L# =0¢,
# "
=o(JGE +NJ\) ;
then (3. 58) takes the form
" n-1
I zn" <hL ||z I} + K (3.59)
m=0

Note that (E¢ > 1 K# > 7. Using mathematical induction, we obtain the estimate
1z <k’ @+nch™ @ £0)

true for m=0,1, ..., K-1, Assuming that (3.60) is true for m =0,1,...,n-1

and using

y 1021 4
Iz || <hL Zo Iz_|l + ¥
m:

and the formula

n-1 n
Z xj=xx_-11 for x#1,
=0

we get

K#(1+hL)

h L#

= ||<hL K#(1+hL) +k! =hL +K —K#(1+hL)

B
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Therefore, we establish that

#
(B <xf (3.61)

Substituting the definitions of K# and L# into (3. 61), we obtain

|2 | <o (-EL + NA) enh“’.

This is exactly the inequality (3.52), which established the truth for m=n. There-

fore, (3.52) holds generally for m=0,1,2,..., N.
Q.E.D.

In section 3.2, Stability, we mentioned that the root condition is a suffi-
cient condition for stability. In this section we show that it is sufficient.

We let /{\ denote the maximum of the moduli of the roots of the characteris-
tic polynomial o(f). Let the first K initial vectors, Y, satisfy

an _
“yn"ﬁ;- ’; for n_o’l)z!ﬂla ,K-l’

where /) is a constant. Let Z be a set of starting vectors whose starting values

satisfy
Nzl <.

-n

A
If we set z = ¢ Y, and apply lemma 3.6.3 to z . we find

AR nhog
"Yn"ﬁr o(GE +NA) e .

Since all roots lie on or inside the unit circle, A I remains bounded, thus estab-
lishing the stability. This completes the proof of the following stability theorem,

Stability Theorem: A nonlinear multistep method is strongly stable if and only if

its characteristic polynomial satisfies the strong root condition.

Now, we proceed, by utilizing all the available lemmas and definitions, to

prove the convergence theorem,



40

3.7 Convergence Theorem

Theorem 3.7: (Convergence Theorem)

A strongly stable and consistent NLMS method is convergent.

The first step in our approach is to estimate thei

N[y(t);h] at t = tn' In

our general formula (3.5), g(t,y) is assumed to belong to cP e , in which case we
can directly use (3. 25) to estimate the nonlinear operator. However, g(t,y) may
not always be differentiable, and, in this case, we need to use a different approach
to estimate the nonlinear operator, which is what we will do in our proof. We want
to use the condition for stability and consistency to prove that

lim ) Ak y(t) V t€ [a,b].

h—~0
t=t
n

Note that the use of strong stability gives a desirable estimate for
i‘N [y(®);h] since Re{A(A)} <0. However, growth estimates may differ, depend-
ing on whether Re{A(A)} <0 or Re {x(A)} > 0.

Proof: Let y(t) be the solution of y' = Ay +@(t,y); y(t) =y,

K K
Ah(K-) _
y, be the solution of iE—o ghe Yy =P i§=0: ®xi D

on be the starting values for j =0,1,... ,K-1.

Set
5(h) = mJax Yy = Y&+

and assume that lim §(h) = 0. We want to show that for any t C[to ,b],
h+0

lim y =y().
he0 ©

t =t

n
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Before we come to the proof, let us make use of both the stability and the

consistency conditions to derive an identity that will be used to estimate the NLMS

operator i

N[y(t);h]. Formula (3.31) gives

J+l

K . j K .
Ah (K-i) (AnY  (An i
?:()"i A ;0 T j’! ;) I ép;(AD) .
= =| i=

Set j = 0. Simplifying the above formula, we obtain

K . K
S a AMED L Andt g Am-o0. 3. 62)
e R 4 Ki
i=0 i=0
This is a consistency condition when j = 0.

Define for ¢ > 0, the M. O.C. (modulus of continuity):

w(e)= max |g(t+,y) -gt.y)l .
| t*-t| <e
t*, t € [to, t]

For i =0,1,...,K, we can write
= g
g(t.y) =g(t .y) +6; w(h), (3. 63)

where
g _ :
||9i||§1 and |t-t | <ih.

Substituting (3. 63) into (3. 2), we obtain

iAh Al ;)

t+,
yt y=e Pyey+ [
a t

8 '
n+i [9(t y) +8; w(i)] dt'.
n

Then,

t . A -t t . ALt

_ iAh nH n+ , n+i S SR

y )=o) J T e at gt y)+ |7 e
n n

°0; wib) . (3. 64)

If we apply

t AL -t) i
| R I e S

t
n
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then (3. 64) becomes

iA

_ h -1 iAh » iAh} .g
y(tn“f'i)_.e Y(tn)-A {I-e *g(tn,y)-A {I-e l’ei

w(ih) .

If we write A-I{I - elAh} = O(h), the above formula becemes

. ) _
v =y - A - AMge .y - omefuan .

Multiplying both sides by o i eAh(K-l) and summing over i, we get

K .
Z o eAh(K—i) e1Ah

i=0

K
o, ARED yit

i n+i

) = y (tn)

K .
) [ ALY AN (AR o (tn’y)] Y e ABEK-D) 54 outh). @.65)
i=0

Since the method is stable, it must satisfy the root condition, Therefore,

A

K
- = _ JAIK - :
p(1) —g @ =0, which implies { } of (3.65) = e y(t) Z @ =0. Simplify-

i=0
ing [ ] of (3. 65) and applying the same root condition, we find

K K
= = - h(K-
_AlzaieAh(Ki)(I_eiAh) ¢, )=_AlzaieA(Ki)9(tn,).
i=0 i=0

Therefore,
K K
Ah(K-i) a1 Ah(K-i)
£y % © yt ) =-A Z @ ® 9(t,y)
i= i=0
K Ah(K-i) . g
-om Y. a, e 8. w(ih) - (3. 66)
i=0
And

K K K
a~ g ..
hi; b (ADGE ..y) =h 1Z=<:> b AN Gt y) +h l;; b, (AD) 8/ w(ih).  (3.67)
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Then, (3.66) - (3.67) gives

K

K
iN y:t] = {-&~ <Z a, ARED +Ah§ ¢Ki(Ah)> 9,y

i=0

JARK-1)

K
(O(h) o + h¢Ki(Ah)) 9‘? w(ih) .
=0

i

By the consistency condition (3. 62), { } -0,

IIiﬁ [yl < &* hogny ,
where
K
#. Ah(K-i)
Q h-i;o(uoa»u ERIL | +1ll, Anf).
Formula (3. 5) - iN [y(t); h] gives
K

K
Ah(K-i) L
iz=(:) % (‘Yn+i ) Y(tn+i)) -k 1;) ¢Ki<9n+i gL Y(tn+i))) =Q6; hu(ih),

where
K

Rl Ah(K-i)
Q- l;:) (OM) «, ¢ +hé,,(Ah)) .
Let Y, Y (tn) = en . In view of the Lipschitz condition for g, i.e.,

lge .y ) -gt y M <Liye) -yl
we can define
g e for e || #90
n n n
g.yt) -g¢ .,y )= ’
T T o gor e =0
n
so that we get

K K
Ah(K-i = -0e8
1E= ai e (K-1) enﬂ -h i=Eo (¢Ki) 841 %04 —Qei hw(Kh) .



We now apply lemma 3.6, 3 with

e =z () =7

o
]

|ao| +|a1| P 500 +|0K|

iAh
max [le |l
i

=
1

K K
D bl By <2 lI9gll L= Lo
= Ki n+i = K1|

o = la- h¢KK(Ah))'1||

t -t
n_o
h

N =

A =]Q ho®h)

and obtain

(t -t )oLé
le ll < o(QEs@ + ¢t -t)IQIN wkh))e

ag h -0 and both §(h) and w(Kh) =0,

.". the above bound o - 0 for every tC[to,b] , establishing the results.

Q.E.D.
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4, COMPUTATIONAL CONSIDERATIONS

In this section, we first provide a general description of the different
types of computational errors and then describe how we treat them at the present
test stage. Then we introduce an algorithm to compute eA when A is a function
of t.

We define the error function cp+1 to be the first term of the initial local
discretization error of the NLMS operator. We perform a general analysis on
the error function cp+1 , which is dependent on the characteristic polynomial
coefficients and the characteristic roots, We will show that, for LMS methods,
it is possible to select values of a such that (:erl reaches a minimum. We will
show, by example, that these methods are not strongly stable. Some interesting
results are presented, which although they are not made conclusive at this time,

do provide information for future research.

4.1 General Considerations
Errors in computation by NLMS methods are attributable to the following
sources:

(1) Input and output conversiou errors
(2) Computational round-off errors
(3) Matrix inversion errors

(4) Pade approximation errors

(5) Local and global discretization e rors,
Errors of types (1) and (2) depend on the computing device and the soft-
ware package. Accuracy can be maintained at a desired level by using double-

precision arithmetic.

45



46

To minimize the errors, the matrix inversion package developed by
Forsythe [12] was used for all test problems. If necessary, these errors can be
improved further by using double-precision arithmetic.

The Pade approximation is stable as a consequence of the Pade lemma,
section 3, 2, 2,

The bounds of the local discretization errors can be estimated by formula

(3.52). The error function Cp+ will be discussed independently in section 4. 3.

1
Since NI.MS methods are strongly stable when applied to the solutions of stiff
equations, the global discretization errors remain bounded within the numerical
approximation provided by the NLMS methods., The growth of this type of error
for all A can be estimated by applying lemma 3, 6. 3.

The round-off errors depend on the precision of the computing device,
which in turn is dependent on the number of digits used. This type of error is
also dependent on the number of operations involved. It should be noted that when
applying NLMS methods, the computation of eA and the inversion of (Ah)K could
have been carried out by techniques other than those used here. To aid in the
appraisal of the round-off errors incurred when obtaining yn+1 , we have pro-
vided table 1 to show the number of operations required for each iteration in
terms .f scalar, vector, and matrix operations. As far as operational counts
are concerned, the use of NLMS methods does not result in fewer operations than
does LMS methods., Albeit the LMS methods are not optimal in this sense, a
submember of the LMS methods, i.e., the Adams family, does minimize the
aumber of arithmetic operations because it chooses @ = 1, 1" -1, and the

remaining ao's = 0. Of course, where functions have operations in common,
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the operations should be calculated beforehand so as to minimize the total number

of calculations,

Table 1. Table of Operations

Step 1 Step 2 Step 3

Description | Explicit | Implicit] Explicit | Implicit] Explicit | Implicit
IS I|S I{S I|S I |8 I|S

(Scalar) (Vector) 1 1 1 1 1 1

(Scalar) (Matrix) 2 5 4 7 10 35
Vector Additior 1|1 2] 2 313 4 14 515 6|6

Matrix Addition 1 2 4 15 22 46
(Matrix) (Vector) 212 313 4 | 4 515 6 |6 717

Matrix Multiplication 1 4 5 11 14 19
Pade 1] * 1| * 2 | * 2 | * 3 | * 3| *
Matrix Inversion 1] * 1] * 1| * 1|* 1| * 1 *
Evaluation of g(t,y) 1|1 21 2 2 |2 3|3 33 4|4

Symbols: I - Initial step

S - Subsequent steps
* - Needed if A = A(t)

4,2  Function A(t)
For Re {A(A(t))} <0 V t, A(t) can be evaluated by the Pade approxima-

tion at every ti . Lawson [24] introduced an Algorithm II, a periodic estimation of

A=A= %i ’
Y|t=kn
ly=Y(t)
which can be adopted in our evaluation of A (t).
This thesis takes A(t) into consideration, but in the test examples A is
chosen to be a real constant matrix. The evaluation of A(t) will be included in

the computation package, which is already under development by the author.
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4,3 The Error Function ¢
p+l

We will now examine the error function cp+1 for the LMS methods of
order p. The following three questions arise:

(1) Can we select a, among the strongly stable families such that Cp+1

i
is at its smallest magnitude ?

(2) If the answer is "yes'" to question (1), is the Adams family the optimal
family ?

(3) If the answer is '"no" to question (1), what is the choice for & such
that Cp+1 is at its smallest magnitude ? Which family exhibits this
characteristic ?

When answering the above quesstions, one should note that when A=0,

NLMS methods reduce to LMS methods. if we multiply both sides of formula (3. 30)

by [(Ah)jﬂ]-1 and let |All -0, we get
K j+1 K
= i 1 j
o ==Y ¢ ). (4.1)
= i g+t j! iz=(:) Ki

For j=0,1,...,p-1, equation (4.1) gives a formulation of the LMS methods of

order p. The matrix form is:

1 \ /) 1 1
O - K ﬂﬂ eo e ¢Kl]
2 2
1 K
1 K 1 ] K
0 3T ** 3 “ *1
i . . " (4'2)
i ol
0 ﬂ K_P 1P1 Kp ¢
pl """ pl “K (-1 " (p-1)! KK
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We are interested in expressing Bi(= ¢Ki (0)) as = function of @ and o i
as a function of the characteristic roots (’j . Thus we need to perturb the roots to
determine the effect on the error function cp+1 when LMS methods are used, par-
ticularly when using the Adams family of the LiMS methods. For convenience in
using formula /4, 2), let us list the first few Cp+1'8 for LMS methods of order up
to 3.

Explicit Integrator:

For K=1,p=1,

4’1,0 -



©
I

73,2

=3
Adams C4—24 .

Implicit Integrator:

For K=1,p=2,

1]
B pa e
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A
8 3
__ 19 1 3
LMS  €.=-220 % " 30 %2 80 %3

ete,

The resulting cp+1 in terms of ay is summarized in table 2,

Let fj be the roots of the characteristic polynomial p(¢) satisfying the

root condition of stability. The relationship

K K i
[l gogp=2 a8 o=t (4.3)
j: i=0

enables us to express o jasa function of fj. From (4.2) we can express

¢Ki (0) as a function of @ ¢Ki(0) can also be expressed as a function of ;'j



according to formula (4.3). Using ;‘1 =1, we can convert table 2 into table 3,

which describes cp+1 as a function of {_.

)

Table 2. cp+1 in Terms of o i for LMS Methods

Order p
C? C3 C4 C
Step K ' 2
1
. 2 N1
1 1
2 "2 173 %
~
8 Y 8
ol —_— =
'g : 2a 1124 %3
19 1
- — - e (X
720 1790 2
4
3 14
——a =
80 ‘315 “4
1
1 12 Y1
1
s 22 “1
4
8
3 JL o, 1,
B 720 1 90 2
Q
S| 3
3
- — Y
80 3
4




Table 3. cp+1 in Terms of

)

¢, for LMS Methods

53

Order p C2 C3 C4 C
Step K >
1
2
s, 1.
12 12 2
9 1

— o —

YRETALRER)

8
13} 1
- +91 52
A
19
720 B 838
11
* 720 (883 %8s 4 * 838y
19 251
*720 2%3% * 720
_L
12
1 1
ETRETRY
8
19 11
: “720 "720 G2 * 5y
3

11
720 §2 §3
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Using table 3, we can examine the change in cp+1 when we perturb the

root g'j c

Initially, iet us examine the second-order predictor,

The choice of ;2 =0 implies that Adams € g = 3 .
In order to perturb the root {2 , we write
5 1

IMSC =13+ g (6t e)-
It is easily seen that when ;'2 +e=-1,¢C 3 will be at 2 minimum. We vary ¢ to
perturb ;'2 . When we keep ¢ positively small, the method remains in the strongly
stable family, As ¢—- 0 and ;'2 - -1, this method is shifted to a weakly stable
family. Now we have found an interesting answer to question (2): Among LMS
methods of order p, the Adams family does not have the smallest error Cp+1 .
Similarly, from the same example, we observe that LMS methods of order p that

possess the smallest error € are not strongly stable. This can serve as an

pt+l

answer to question (1), We now arrive at the followiny conjecture: Among LMS

methods of order p, the weakly stable families possess the smallest error C pHl
The above study indicates that there should exist an NLMS family that

possesses the smallest error function € This optimal family is not yet iden-

p+l’
tified and will not be identified in this thesis.
We desire to make the best possible choice of « i’ so that when applying

NLMS methods, a minimum error function cp+1 results. Our recommendation is
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as follows: Identify an NLMS family whose ap = 1, a, ,=-1,

=
K-1 K-2 K-3

=,.. = ao =0, This family, which is a generalization of the Adams family, we

label GA. We refer to the predictors of this family as GAB (Generalized Adams
Bashforth) and the correctors of this family as GAM (Generalized Adams Moulton).
We have made several numerical investigations with our test problems on
different selections of ai,from hoth strongly and weakly stable LMS families,
without noting much difference in the results. Without a thorough round-off error
analysis, one cannot tell how to choose ai's that will reduce the error function

C

pHl” However, as pointed out earlier, the Adams f:umily has the least number

of operations, and this will aid in the reduction of round-off errors. Until a

1’ wg recommend the GA family as the represen-

tative family for all the strongly stable NLMS methods.

thorough analysis is made of cp+



S. NUMERICAL COMPARISONS

Hull [19] and Ehle [11] have thoroughly tested selected existing numerical
methods for solving initial value problems in ordinary differential equations; Hull
tested for beth stiff and nonstiff differential equations, and Ehle tested for stiff
differential equations. Their work stressed the requirement that in order to com-
pare methods, meaningful criteria must be defined. Since the tests included in
this thesis are limited, we do not need an extensive rule for testing purposes.

There are two basic reasons why we do not intend to perform extensive

tests:

(1) At this stage, the principal objective is to confirm whether NLMS
methods work effectively on the selected problems. Some features,
such as PECm and double-precision arithmetic, are not yet incorpor-
ated in our present computation package.

(2) Although some of the answers that can be obtained by using the Hull-
Ehle test criteria would be desirable, those answers are not required
for our present purposes.

However, we do define reasonable te.it criteria that should result in a meaningful
comparison of NLMS methods against the selected methods. Since each problem is
different in nature, we will define specific test criteria for each problem.

To test NLMS methods, we developed a program package for use with the

Univac 1108, It is written in FORTRAN V language and in single-precision arith-
metic, Adams' formulas are written in the same language and are inserted in the

program wherever needed. Gear's program is run independently.
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NLMS methods have been tested extensively on a number of stiff problems.
Five stiff problems whose solutions are known have been selected for presentation,
Problem 5, selected from Ehle's report, has four complex eigenvalues; NLMS
metkods did very well on this problem. Problem 6 is presented to demonstrate
how well an NLMS method can handle a nonstiff problem; this problem has one
eigenvalue whose real part >0. The results of the comparisons are presented by

graph or table or both, depending on the need in each case.
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Problem 1

Problem Description:

y'=-100y + (1L +t}); y(0)=1.

Exact Solution:

1 2\ -100t 1 1 2 2
Y(t)=<1'm'—3> + 7o+ = (100"t - 200t +2) .
100 100

Problem Parameters:

Time Interval: [0, 1,95]

1.
o

Step Sizeh : h= i=1,2,..,,14,

NLMS Methods Applied:

Explicit 2-step.

Compare Against:

Gear's program and second-order Adams-Bashforth method.

Comparison Criteria:

(1) Relative error is used as the measure of success when comparing

methods,

(2) Gear's program, Adams' method, and NLMS-2-step are used with

14

the same fixed h=2"" over t € [0, 1,95].

(3) Adams' method and NLMS-2-step are used with different h = % ,
2
i=1,2,..., 14 over t € [0, 0.3], where the exponential makes a
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significant contribution. For a larger step size >0.3, where the
exponential term damps out, the comparison is made on five suc-

cessive computations.

Description of Comparisons;

Tavle 4: Coemparison Among Methods of ~ear, Adams, and NLMS of
Order 2 with Fixed h = 2”24,

Table 5: Comparison Between Methods of Adams and NLMS of Order 2
for Different h.

Figure 1: t versus Inglo E.

Figure 2: —Logzh versus Log10 E.

Eigenvalues: -100,

Source: S. Preiser (1969).

Remarks:

Gear's variable-order technique, as applied to this problem, involves
trying different orders up to order 3. However, most computations are car-
ried out with a second-order stiff method with an acceptable initial h = 2_14 .

Figure 1 shows that for a fixed small step size, the nonlinear multi-2-
step method produces more accurate results in ierms of relative error.

Figure 2 shows that to maintain an accuracy of the order of 10—6 ,

Adams' methods require a step size of 2'14 , whereas the nonlinear multi-

-9
2-step method can use a step size of 2 = to maintain the same wccuracy.



Table 4, Comparison Among Methods of Gear (G),

Adams (A), and NLMS (N) of Order 2
with Fixed h = 2-14

Number of Steps
t=nh

Method

Relative Error

Z»Q

. 2163 8476 E-03
. 1055 7626 E-06
.0

500

. 7845 4426 E-02
.4139 7907 E-04
. 3764 9440 E-05

1,000

. 3423 0498 E-02
. 1871 0187 E-04
. 1504 4324 E-05

5,000

. 8566 0224 E-06
. 8565 7385 E-06
. 9636 4558 E-07

10, 000

. 6845 3327 E-06
. 6844 9640 E-06
.4620 3507 E-06

15, 000

. 1061 7635 E-05
. 1061 6991 E-05
. 1534 9866 E-06

20, 000

. 7836 8658 E-06
. 7836 3961 E~06
. 3398 9188 E-06

25,000

. 1115 4447 E-05
. 1115 3821 E-05
.3953 2531 E-06

30,000

ZPpQ|Z2pQ|Z2pQ1Z2pQ(2Z2PQ(ZPQ|lZPpQ(Z»0

. 8522 7857 E-06
. 8522 3467 E-06
. 3236 3342 E-07
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Table 5. Comparison Between Methods of Adams (A)

and NLMS (N) of Order 2 for Differenc h

- L0g2 h

Method

Relative Error

14

.4944 3871 E-06
.2317 6814 E-07

13

.3797 0580 £-05
. 5607 4696 E-07

12

. 3049 6416 E-04
.4306 1870 E-07

11

. 2472 3962 E-03
.5971 7310 E-07

10

. 2028 3254 E-02
. 5312 1861 E-07

. 1685 8731 E-01
. 7057 9671 E-07

. 1383 0503 E-00
. 1135 2181 E-05

. 1269 6386 E+01
.3016 8420 E-04

. 3223 7045 E+03
. 2619 8035 E-03

. 3333 8325 E+05
. 1237 5420 E-02

. 1516 9195 E+07
. 5426 6854 E-02

.4206 1372 E+08
. 1789 7609 E-01

. 7013 3530 E+09
.3655 0522 E-01

Zp|zZzr|l2p|2p| 22|22 |22 2> |Z2>|Zp 2> ]|2>2 >

. 7568 7259 E+10
.4881 1901 E-01
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5.2 Problem 2

Problem Description:

y' =-100y + (1 + £ - t4): y@=1.

Exact Solution:

(99 2 aa\ 100t [ 1 2 24
y® (100 3" 5)" +<1oo+ 3" 5>

100° 100 100° 100
-2
+< 2 244)“(&' = e
100 100 100 100 0

Problem Parameters:

Time Interval: [0, 20]

Step Sizeh 2N(.1E-05); N=0,1,....

NLMS Methods Applied:

Explicit 2-step.

Compare Against:

Second-order Adams-Moulton method.

Comparison Criteria:

Compare the results, by means of relative errors, after the first calcu-

lation since the initial local discretization and round-off errors are the

smallest then.

Description of Comparisons:

Table 6;: Comparison Between Methods of NLMS-2-Step and Second-
Order Adams Moulton.

Figure 3: LoglOE versus N.
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Eigenvalues: -100.

Source: S. Preiser (1969),

Remarks:
Figure 3 shows that, for a required accuracy of 10-7, Adams' step

size needs to be chosen ~26 (.2E-06); NLMS can maintain the same accu-

racy using a step size ~213 (.2E-06). This shows that hN = 100hA=||A|| hA .

confirming our analysis on the step size.

LOQIOE

Figure 3: LogloE versus N



Table 6, Comparison Between Methods of NLMS-2-Step

and Second-Order Adams Moulton

h =2 (. 1E-06)
N

Relative Error

NLMS Explicit 2

Adams Bashforth 2

W 00 I O O W W N = O

I T T e S S S S S S N W
DD = O © o =1 M O ok WM = o

.0
. 1490 2341 E-07
.7451 7609 E-08
7452 9413 E-08
. 7455 3027 E-08
. 1492 0056 E-07
. 1493 8974 E-07
.0
. 1505 2984 E-07
. 7603 1685 E-08
. 7758 8486 E~08
. 1615 9463 E-07
.0
. 1029 9568 E-07
. 7108 4830 E-07
.7129 6095 E-06
. 1606 4611 E-04
.5174 4164 E-03
.4007 2017 E-02
. 1700 8785 E-01
.5041 3123 E-01
. 5908 2495 E-01
. 1357 5798 E+01

. 7450 8757 E-08
.0

. 7451 7609 E-08
. 7452 9413 E-08
. 7455 3027 E-08
.0

.0

. 4246 5323 E-07
. 5268 5443 E-07
.4561 9011 E-06
. 3623 3823 E-05
. 2963 6455 E-04
. 2478 3312 E-03
. 2167 8635 E-02
. 2076 5414 E-01
. 2390 2048 E-00
. 3890 9526 E+01
. 7090 2860 E+02
. 2529 4871 E+03
. 4998 2459 E+03
. 9109 8973 E+03
. 1709 4020 E+04
. 1050 7818 E+04
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5.3

Problem 3

Problem Description:

-1 95 1
Y' = Y g Y(O) = .
-1 -97 1

Exact Solution.

956 2t _ 4536
1
YO =5
-9 il
48e 6t —e 2t

Problem Parameters:

Time Interval: [0, 10]

Step Size h : h=$ ; 1=0,1,...,15 .,

NLMS Methods Applied:

Explicit methods of steps 1, 2, and 3.

Compare Against:

Exact solution,

Comparison Criteria:

The tolerance definition follows Ehle; i.e.,

ymaxi=max|||yo||, max|'yk”; k=0,1,...,1

Yier " Y0 Yoy
ymax

Error =

i

Ehle's tolerance = 10-7 .

Results are tabulated at t = 10 for different h by different NLMS

methods in terms of above error.
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Description of Comparisons:

Table 7: Ehle Errors by NLMS Methods for Different h

(Max. Ehle error = 10

Eigenvalues: {-2, -96}.

-4.8 to 10

-5. 9) .

Souree: Ehle initial value problem 1 [11],
Table 7. Ehle Errors by NLMS Methods for Different h
(Max. Ehle error = 10-4. 8 to 10-5. 9)
h = llq Error
2 1-Step 2-Step 3-Step
i
0 . 1622 8589 E-11
1 . 1622 8981 E-11 | ,7368 3619 E-16
2 . 1622 8589 E-11 | ,1217 2021 E-11 | , 8113 5093 E-12
3 . 1622 8981 E-11 | . 1420 1095 E-11 | .1217 2423 E-11
4 . 1622 9374 E-11 | . 1521 5431 E-11 |, 1420 2273 E-11
5 . 1622 3879 E-11 | .1571 7888 E-11 | .1521 3075 E-11
6 . 15652 2089 E-11 | ,1597 9716 E-11 | .1572 6132 E-11
7 . 1327 9476 E-11 | . 1540 0083 E-11 | .1597 5790 E-11
8 . 1244 0601 E-11 | .1323 2902 E-11 |, 1424 9808 E-11
9 .1284 1213 E-11 | . 1241 2022 E-11 | .1274 2658 E-11
10 . 1451 7434 E-11 | .1283 5312 E-11 | ,1242 0126 E-11
11 . 1637 2653 E-11 | , 1462 6200 E-11 | .1350 7056 E-11
12 . 1646 6864 E-11 | ,1646 5294 E-11. | , 1565 7965 E-11
13 . 1682 9968 E-11 | ,1682 0547 E-11 | .1682 0547 E-11
14 . 1757 1092 E-11 | .1757 1092 E-11 | ,1756 2456 E-11
15 . 1857 5613 E-11 | ,1857 5613 E-11 | ,1857 5613 E-11
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5.4

Problem 4

Problem Description;

-0.1 -49.9 0 2
y'= 0 -50 0 y:; y(0 =] 1
0 70 -120 2
Exact Solution:

-0.1t _ -50t
e +e
-50t
yt)=| e

=120t -50t
o7120t , o750t

Problem Parameters:

Time Interval: [0, 10]

Step Sizeh : 0.01 and 0. 2,

NLMS Methods Applied:

Explicit methods of steps 1, 2, and 3.

Compare Against:

Trapezoidal rule,

Comparison Criteria:

(1) The error definition follows Seinfeld; i.e.,

y -y(t)

Error R = 2 1 for each component.
)

(2) The computation time is also tabulated.
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Description of Comparisons:

Table 8: Relative Error Comparison Between NLMS Methods and

Trapezoidal Rule.

Eigenvalues: {-0.1, -50, -120},
Source: Seinfeld, Lapidus, and Hwang [29].

Remarks:
Note that NLMS methods of different steps produce errors of the same
order of magnitude. This is expected because we designed the methods to

solve the problem y' = Ay effectively.

Table 8. Relative Error Comparison Betwew.: NLMS Methods
and Trapezoidal Rule

Motag " i Ry Ry Time
t=0.4 | t=10 | t=o0.4 | t=0.4 |
-3 -4 7 5
Trapezoidal Rule| .20 | 1,0x10 = |2.7x10 = |6.5x10 [1,3x10" | 1.3
-5 -4 -6 -6
NLMS-1-Step .01 | 1,9x10 =~ |4.7x10  |2.3x10  [2.5x10 | <1
NLMS-2-Step 01 [ 1,9x107° | 4.7x107 [2.3x107% | 2.6x107° <1
-5 -4 -6 -6
NLMS-3-Step .01 ]1,9x10 ° |4.7x10  |2.4x10 = [2.6x10 | <2
-5 -4 -6 -6
NLMS-1-Step .20 | 1,9%x10 7 |4.5%x10  [4.0x10 = |[4,0x10 | <1
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Problem 5

Problem Description:

-10 10 0 0 1
-103 -104 0 0 1
0 0 -50 10 1

\

0 0 -10 -50

Exact Solution:

4
yl(t) = e-lo t [cos(lO3 t) + sin(lO3 t)]

4
-10
yz(t) =e . [cos(lO3 t) - sin(lO3 t)

Ya(t) = e 00t [cos(10t) + sin(10t)]
y, ) = e o0t [cos(10t) - sin(10t)].

Problem Parameters:

Time Interval: [0, 3]
Step Sizeh : 3/24; 4=0,1,...,15.

NLMS Methods Applied:

Explicit method of step 1.

Compare Against:

Exact solution,

Comparison Criteria:

The tolerance definition follows Ehle; see problem 3. Results are tabu-

lated at t =.91552374 E-01 for different h in terms of above error,

Description of Comparisons:

Table 9: Largest Ehle Errors by NLMS-1-Step for Different h

-2, 3.1
(Max. Ehle error = 10 2% t0 107 1y,
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Eigenvalues: {-50 + 101, -10% + 10%1}
Source: Ehle initial value problem 3 [11],
Remarks:
Note that table 9 indicates increased errors with decreased step sizes;
this is probably due to round-off errors. In addition, it is not surprising that,

for the largest step sizes, errors become zero since NLMS methods were de-

signed to solve this type of problem exactly inthe absence of round-off errors.

Table 9. Largest Ehle Errors by NLMS-
1-Step for Different h
(Max. Ehle error = 10726 t5 10-3. 1)

h= % Error
2
i 1-Step
0 0
1 0
2 0
3 . 8092 0713 E-16
4 . 3215 5494 E-12
5 . 1028 9758 E-09
6 . 2478 1019 E-09
7 . 1472 5503 E-08
8 . 8835 3017 E-08
9 . 8011 5398 E-08
10 .3071 9531 E-07
11 . 2071 9531 E-07
12 . 3950 8640 E-07
13 . 2070 1878 E~06
14 .7513 3183 E-07
15 .4879 6726 E-06




5.6

Problem 6

Problem Description:

yi = Yy + i Y(0) =

Exact Solution:

Zet-l

y® =

2et-1

Problem Parameters:

Time Interval: [0, 0.082]

Step Size h : 1/28 .

NLMS Methods Applied:

Explicit NLMS-2-step method.

Compare Against:

Exact solution,

Comparison Criteria:

Using vector ||e|| . » compare results against exact solutions.

Description of Comparisons:

Table 10: Table of Numerical Results and Exact Solutions.

Eigenvalues: {-10, 1} .
Source: S. Preiser (1969).
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Remarks:

73

NLMS methods were designed to be effective for g(t,y) belonging to

the class of slowly varying, low-order polynomials; therefore, it is not

surprising that the NLMS-2-step method produces accurate results,

Table 10, Table of Numerical Results and Exact Solutions
(N: NLMS-2-Step; T: Exact Solution)

Method

Solution

()

Yo ()

-

Relative Error

. 7812 5000 E-02

. 1015 6862 E+01
. 1015 6862 E+01

. 1015 6862 E+01
. 1015 6862 E+01

. 1467 1029 E-07

. 2343 7500 E-01

. 1047 4286 E+01
. 147 4286 E+01

. 1047 4286 E+01
. 1047 4286 E+01

.4296 8750 E-01

. 1087 8105 E+01
. 1087 8105 E+01

. 1087 2106 E+01
. 1087 8105 E+01

. 1369 8305 E-07

. 6250 0000 E-01

.1128 9889 E+01
. 1128 9889 E+01

. 1128 9889 E+01
. 1128 9889 EH01

. 2639 7356 E-07

. 8203 1250 E-01

HZlAZ| AZI¥3Zz|a32

. 1170 9794 E+01
. 1170 9795 E+01

.1170 9794 E+01
.1170 9795 E+01

. 5090 1528 E-07




6. FUTURE RELATED RESEARCH

The following areas of future research are desirable:

1)

(@)
@)

Develop a package of NLMS computer programs with the following
features:

{z) The inclusion of I.MS methods

(b) Freedom to select @,
(c) Built-in pc” procedure with variable step size
(d) Double-precision option

(e) Evaluation of A(t) at t= 1:i and application of Pade approximation

to A(ti) .
With feature (a), NLMS methods can solve nonstiff equations.
With feature (e), NLMS methods can solve nonlinear equations,
Perform a thorough round-off error analysis for NLMS methods.
Develop theory to appraise the error function cp+1 s> that for a cer-
tain choice of the combination of characteristic roots, one can minimnize

the error function cp B
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7. CONCLUSIONS

We have developed a f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>